

. Sequences.

1. $u_n = \frac{1}{2}n(n+2)$ find u_2, u_7 . Find n if $u_n = 24$.

2. $u_1 = -1, u_2 = 3, u_3 = 7$.

Write down a recurrence relation for the sequence and find a formula for u_n .

3. $u_1 = 2, u_2 = 6, u_3 = 18$.

Find a recurrence relation for the sequence and find a formula for u_n .

4. $S_n = \frac{n(n+1)}{4}$ Find u_1, u_2, u_3 . Find a recurrence relation for the sequence and a formula for u_n .

5. $u_n = 3 \times 4^n$ Evaluate $\frac{u_{n+1}}{u_n}$

6. $u_n = \frac{n}{2} \{1 - (-1)^n\}$ Find u_{15} and u_{16} .

7. Evaluate (i) $\lim_{n \rightarrow \infty} (1 + \frac{1}{n})$ (ii) $\lim_{n \rightarrow 0} (\frac{1}{n^2})$ (iii) $\lim_{n \rightarrow 0} (\frac{n+1}{n})$ (iv) $\lim_{n \rightarrow \infty} (\frac{n-1}{n})$

8. $u_{n+1} = 20 + \frac{3}{4}u_n$ Evaluate $\lim_{n \rightarrow \infty} u_n$.

9. $u_{n+1} = 4 - 0.1u_n$ Evaluate $\lim_{n \rightarrow \infty} u_n$

10. S_n is the sum of n terms of the sequence $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$. Evaluate S_1, S_2, S_3 , and S_4 .

Evaluate $\lim_{n \rightarrow \infty} S_n$.

11. $u_n = 1 + \frac{2}{n^2}$ defines a sequence. Write down u_1, u_2, u_3 . Evaluate $\lim_{n \rightarrow \infty} u_n$

12 A sequence is defined by $u_n = 4n + 7$ Write down u_1, u_2, u_3, u_{n+1} , and hence evaluate $u_{n+1} - u_n$.

13 A sequence is defined by $u_{n+1} = 10u_n - 9$, when $u_1 = 2$. Write down the first 5 terms.

14 A sequence is defined by the recurrence relation $u_{n+1} = 0.2u_n + 4$ where $u_1 = 3$.

(a) Find the first five terms of the sequence.

(b) Will there be any terms greater than 5?

(c) what happens to u_n as $n \rightarrow \infty$?

15 For a certain sequence $S_n = n^2 + 4n$.

Evaluate S_1, S_2, S_3 and hence find the first three terms of the sequence.

16. Find the first three terms of the sequence which has $S_n = 3n^2 + 9n$.

17 Find the fourth term of the sequence with $S_n = n^3 - 2n$.

18 Calculate the tenth term of the sequence given by $S_n = 2^n + 1$

19 A sequence is given by $u_{n+1} = 2u_n + 1$

(a) Find expressions for u_1, u_2 , and u_3 showing that $u_3 = 2^3 u_0 + 2^2 + 2 + 1$.

Deduce a similar expansion for u_n .

20 A sequence is given by $u_{n+1} = 5u_n + 1$.

Find expressions for the terms u_1, u_2, u_3 , Showing that $u_3 = 5^3 u_0 + 5^2 + 5 + 1$.

Find a similar expression for u_n .

21. A sequence is given by $u_{n+1} = 3u_n + 2$.

Find expressions for u_1, u_2, u_3 , showing that $u_3 = 3^3 u_0 + 2 \times 3^2 + 2 \times 3 + 2$

22 A sequence is defined by $u_{n+1} = au_n + b$ If $u_1 = 5, u_2 = 7, u_3 = 13$, find the constants a and b .

23 A sequence is defined by $u_{n+1} = 5u_n + b$, where b is constant.

If $u_1 = 8$ and $u_3 = 224$, find b .

24 If $u_{n+1} = 4u_n + 1$ and $u_3 - u_2 = 10$, calculate the value of u_1 .

25. Show that the sequence defined by $u_{n+1} = \frac{3}{4}u_n + 5$, with $u_1 = 12$, has a limit L

Calculate L and find the least value of n for which $|L - u_n| < 0.5$

26. Show that the sequence defined by $u_{n+1} = 0.8u_n + 14$ has a limit L . Calculate L .